

Itô Calculus, application to Black-Sholes formula

Charles Mitais & Diego Visani

EPFL, Lausanne

Thursday, 5th March 2020

Outline

Itô Calculus

Wiener Process

Itô's Integral

Itô's Lemma

Break

Black Scholes Model

Introduction : European Options

Value of an European Option : Definition

Arbitrage Pricing

Putting all together : Black Scholes PDE

Solving the equation

Gaussian White Noise Process

$$\frac{dx(t)}{dt} = \underbrace{A(x(t), t)}_{\text{Drift}} + \underbrace{\sqrt{D(x(t), t)}}_{\text{Diffusion}} \underbrace{\Gamma(t)}_{\text{White Noise Fct}} \quad (1)$$

With $\langle \Gamma(t) \rangle = 0$ and $\langle \Gamma(t) \Gamma(t') \rangle = \delta(t - t')$

Rewrite:

$$dx(t) = A(x(t), t)dt + \sqrt{D(x(t), t)}dW(t) \quad (2)$$

Where $dW(t) \equiv \Gamma(t)dt$ is a Wiener increment

Properties of a Wiener process $W(t)$

We write $W_t \equiv W(t)$

1. $W_0 = 0$
2. Independent increments: $\forall t > s \geq 0$, $W_t - W_s$ is independent of $\{W_u\}_{u \leq s}$
3. Normally distributed increments: $\forall t > s \geq 0$,
 $W_t - W_s \sim \mathcal{N}(0, t - s)$
4. W_t is continuous in t

Itô's Integral

Definition: on blackboard!

Main Properties:

1. Existence whenever $G(t)$ is continuous and non-anticipating on $[0, t]$
2. General Differentiation Rule: for an arbitrary function $f(W(t), t)$:

$$df(W(t), t) = \left(\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial W^2} \right) dt + \frac{\partial f}{\partial W} dW \quad (3)$$

Why is $dW^2 = dt$? And why is $dW^{N+2} = 0$ for $N > 0$?
⇒ Proof and example on blackboard!

Itô's Lemma

Let's go back to the initial SDE:

$$dx(t) = A(x(t), t)dt + \sqrt{D(x(t), t)}dW(t) \quad (4)$$

For an arbitrary function $f(x(t))$:

$$df(x(t)) = f(x(t) + dx(t)) - f(x(t)) = \sum_{n=1}^{+\infty} \frac{1}{n!} \frac{\partial^n f(x(t))}{\partial x^n} (dx(t))^n \quad (5)$$

Intermediate steps on blackboard!

Itô's Lemma:

$$df(x(t)) = \left[A(x(t), t)f'(x(t)) + \frac{1}{2}D(x(t), t)f''(x(t)) \right] dt + \sqrt{D(x(t), t)}f'(x(t))dW(t)$$

Outline

Itô Calculus

Wiener Process

Itô's Integral

Itô's Lemma

Break

Black Scholes Model

Introduction : European Options

Value of an European Option : Definition

Arbitrage Pricing

Putting all together : Black Scholes PDE

Solving the equation

Outline

Itô Calculus

Wiener Process

Itô's Integral

Itô's Lemma

Break

Black Scholes Model

Introduction : European Options

Value of an European Option : Definition

Arbitrage Pricing

Putting all together : Black Scholes PDE

Solving the equation

Black-Scholes Model

- ▶ Black and Scholes (both economist and mathematician) published in 1973 the article *The Pricing of Options and Corporate Liabilities*¹ to introduce their model.
- ▶ M. Scholes got the Nobel Prize in 1997 for this work, along with Robert Merton (F. Black died in 1995).

Figure 1: Fischer Black and Myron Scholes

¹ Fischer Black and Myron Scholes. “The Pricing of Options and Corporate Liabilities”. In: *Journal of Political Economy* 81.3 (1973), pp. 637–654.

European Option : definition

Definition A *European Option* is a contract that gives its owner the right² to buy or sell a certain asset at a predetermined delivery price (the *strike*, k) in a future time (the maturity date, T).

The goal of Black and Scholes was to give a value for such contract at time $t < T$.

²but not the obligation

European Option : value at time T

Let's consider a *call* option i.e. the option to buy the underlying.

- ▶ At maturity time T , the underlying is worth S_T on the market and the owner has the opportunity to buy it at k
 - ▶ If $S_T > k$ the owner should exercise the option, he will gain $S_T - k$ if he sells directly the asset.
 - ▶ On the contrary, if $S_T < k$ the owner has no interest to exercise the option : his payoff is 0.
- ▶ The payoff (gains at time T) is thus mathematically defined as $\Phi(S_T) \equiv (S_T - k)^+ = \max(S_T - k, 0)$:

European Call Option : Payoff

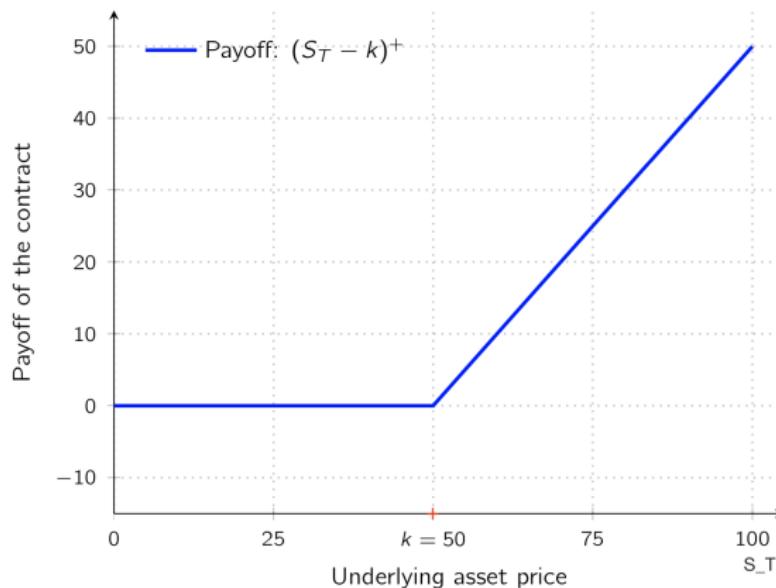


Figure 2: Payoff of a Long Call EU Option with strike $k = 50$ at time T .

European Option : use in practice

European Options are widely used in finance, for mainly two reasons :

- ▶ Hedging : prevent big losses in a portfolio, secure the price of a commodity³ in advance, lock-in a currency rate in advance, ...
- ▶ Speculation

³E.g. Airline Companies use them to secure the price of oil

Value of European options

What is the *value* of an option contract ? It is the price people would agree to buy this contract at any time $t < T$.

- ▶ The price of an option at time t should reflect the expected payoff obtained at the maturity $\Phi(S(T))$

Several model exists to predict the price of assets, Black and Scholes used the Geometric Brownian Motion

Black-Scholes Model : Return on the underlying asset

- ▶ One of the most important component in the model is the prediction of the underlying price $S(t)$.
- ▶ Black and Scholes assumed that the dynamics of a stock follows a Geometric Brownian Motion :

$$dS_t = \underbrace{S_t \mu(t) dt}_{\text{drift, riskless part}} + \underbrace{S_t \sigma(t) dW_t}_{\text{diffusion, risky part}} \quad (6)$$

Where W_t is a Wiener Process.

Simulations of Geometric Brownian Motion

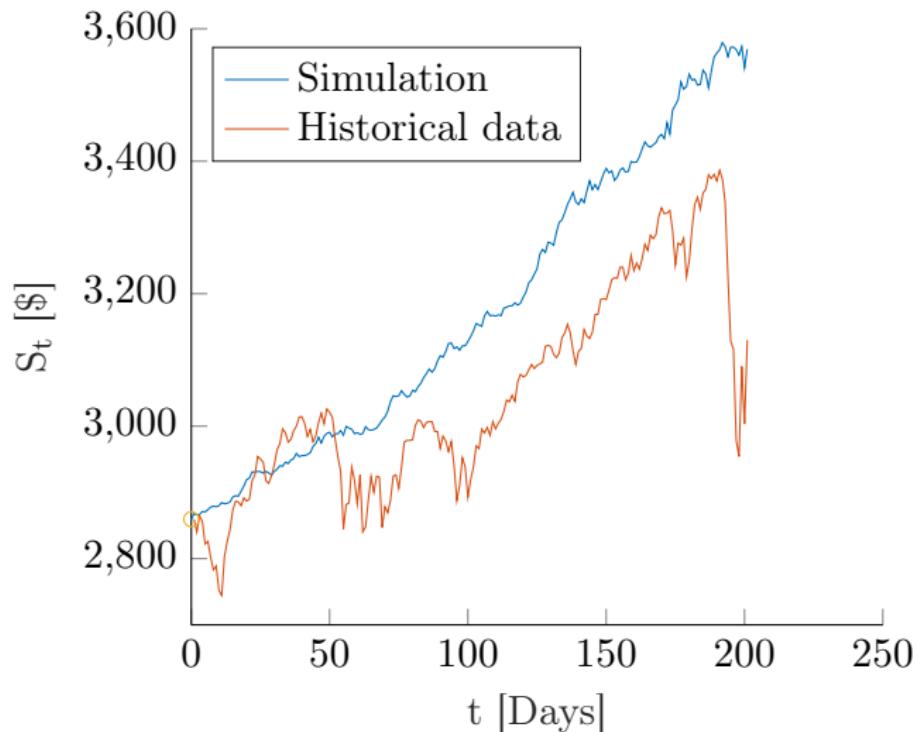


Figure 3: Simulation of a Geometric Brownian Motion with parameters estimated from the S&P 500 over the last 200 days, average over 5000 trajectories.

Black-Scholes Model : Return on the underlying asset

- ▶ Why Geometric Brownian Motion ? Because *returns* (relative increments) on asset $\frac{dS_t}{S_t}$ follow a drifted random walk, not the price itself.
- ▶ Assuming μ and σ constants the solution of this SDE reads:

$$S(t) = S_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t} \quad (7)$$

(Blackboard derivation with Itô's Lemma.)

- ▶ Properties of this process :
 - ▶ Trajectories are continuous (it is a continuous time model),
 - ▶ The returns are independent,
 - ▶ The returns are identically distributed.

Value of an option

- ▶ The value of an option F can only depend on the current price of the underlying (as it is memoryless) and the current date : formally, we have $F = F(S_t, t)$. S_t being a stochastic process, one can apply Itô's lemma : (derivation on the blackboard)

$$dF(S(t), t) =$$

$$\left(\frac{\partial F}{\partial t} + \mu(t)S(t) \frac{\partial F}{\partial S} + \frac{1}{2}\sigma(t)^2 S(t)^2 \frac{\partial^2 F}{\partial S^2} \right) dt + \sigma(t)S(t) \frac{\partial F}{\partial S} dW(t)$$

- ▶ where the last term represent the stochastic (risky) component of the option's price.
- ▶ This is the **dynamics** of the option's price, but we need one more condition a ("reference point") to compute F : no arbitrage principle

Second equation : no arbitrage principle

- ▶ An arbitrage is a riskless strategy that has a positive payoff with probability 1.
- ▶ Such arbitrage are not allowed in the financial theory : this is the **no arbitrage principle**.
- ▶ It is an application of the Supply and Demand principle.

No arbitrage principle : riskless assets

- ▶ The no arbitrage principle implies that a riskless strategy should not pay more than lending money at the bank over the same period otherwise, it is underpriced.
- ▶ Bank account dynamics :

$$dB(t) = rB(t)dt \quad (8)$$

- ▶ Our goal is to construct a riskless portfolio which contains the option, in order to compare it with (8).

Construction of the portfolio

- ▶ It is possible to construct a riskless portfolio by buying one option, and selling⁴ a certain amount Δ of the underlying.
- ▶ At time t , the value of this portfolio is

$$V(S_t, t) = \underbrace{F(S_t, t)}_{\text{Value of the option}} - \underbrace{\Delta \cdot S_t}_{\text{Value of stock}} \quad (9)$$

- ▶ The question is how to choose Δ to remove risk⁵ ?

⁴In finance it is possible to hold both positive and "negative" quantity of asset. The first is said to be a *long* position and the second a *short* position.

⁵This way of defining the portfolio, called "Delta Hedging" is slightly different from the original derivation of Black and Scholes :

Jean-Philippe Bouchaud and Marc Potters. *Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management*. 2nd ed. Cambridge University Press, 2003

Hedged (riskless) portfolio

- ▶ Reminding the value of the portfolio :

$$V(S_t, t) = F(S_t, t) - \Delta \cdot S_t \quad (10)$$

- ▶ the goal is to protect the value of the portfolio⁶ from the variation of S_t , hence we have to impose

$$0 = \frac{\partial V}{\partial S} = \frac{\partial F}{\partial S} - \Delta \implies \Delta = \frac{\partial F}{\partial S} \quad (11)$$

⁶We assume that the change in the portfolio value only comes from the variation of the asset's value and not from a change in portfolio's composition : it is said to be *self financing*.

Hedged portfolio : Verification with Itô's Lemma

- ▶ S_t being a stochastic process, one check that for $\Delta = \frac{\partial F}{\partial S}$ the dynamics of the portfolio is indeed riskless by applying Itô's Lemma :

$$dV(s, t) = dF(s, t) - \Delta \cdot dS_t \quad (12)$$

$$= \left(\frac{\partial F}{\partial t} + \frac{1}{2} \sigma^2 s^2 \frac{\partial^2 F}{\partial s^2} \right) dt \quad (13)$$

(Blackboard derivation)

Hedged portfolio

- ▶ The dynamics of the portfolio is purely deterministic : it is indeed riskless for the choice $\Delta = \frac{\partial F}{\partial S}$
- ▶ Given the no arbitrage principle, this portfolio must have the same return than a bank account :

$$dV(S, t) = rV(S, t)dt \quad (14)$$

Summing up : our model

We now have the two components of our model :

1. The dynamics of the option's price

$$\begin{aligned} dF(S, t) = & \\ & \left(\frac{\partial F}{\partial t} + \mu S_t \frac{\partial F}{\partial S} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 F}{\partial S^2} \right) dt + \sigma S_t \frac{\partial F}{\partial S} dW(t) \end{aligned} \quad (15)$$

2. The value of a riskless portfolio combining an option and the underlying :

$$dV(s, t) = dF(s, t) - \underbrace{\frac{\partial F}{\partial s}}_{\Delta} dS(t) = rV(s, t)dt \quad (16)$$

Black-Scholes PDE

Combining the two previous equations gives the famous Black-Scholes PDE :

$$\frac{\partial F(s, t)}{\partial t} + rs \frac{\partial F(s, t)}{\partial s} + \frac{1}{2} \sigma^2 s^2 \frac{\partial^2 F(s, t)}{\partial s^2} - rF(s, t) = 0, \quad (17)$$

$$F(S_T, T) = \Phi(S_T) \quad (18)$$

Black-Scholes PDE : Remarks

- ▶ The drift coefficient μ does not appear in the PDE. In fact the price F of the option is relative to the price of the underlying, hence its deterministic evolution does not play a big role. Only the volatility is important.
- ▶ If the interest rate of the bank is zero $r = 0$, the equation becomes :

$$\frac{\partial F}{\partial t} = -\frac{D}{2} \frac{\partial^2 F}{\partial s^2} \quad (19)$$

which is a diffusion equation in "backward" time given the sign, with a *terminal condition* $\Phi(S_T)$ instead of initial condition, as we often have in physics.

Solving the equation

Remind the PDE :

$$\frac{\partial F(s, t)}{\partial t} + rs \frac{\partial F(s, t)}{\partial s} + \frac{1}{2} \sigma^2 s^2 \frac{\partial^2 F(s, t)}{\partial s^2} - rF(s, t) = 0,$$
$$F(T, s) = \Phi(s)$$

- ▶ There are many ways of solving this equation
- ▶ One is to cast it into a backward Fokker-Planck equation for the transition probability $P(x, T|s, t)$:

$$\frac{\partial P(x, T|s, t)}{\partial t} + rs \frac{\partial P(x, T|s, t)}{\partial s} + \frac{1}{2} \sigma^2 s^2 \frac{\partial^2 P(x, T|s, t)}{\partial s^2} = 0,$$
$$P(x, T|s, T) = \delta(x - s)$$

Solving the equation

In this case the solution reads :

$$F(s, t) = e^{-r(T-t)} \int dx P(x, T|s, t) F(x, T) \quad (20)$$

Where $F(x, T) \equiv \Phi(x)$ is the terminal value. For a call option,
 $\Phi(x) = (x - k)^+ = (x - k) \cdot \Theta(x - k)$

Solution to Black-Scholes PDE : call option

In the case of a call option $\Phi(S_T) = (S_T - k)^+$:

$$F(S_t, t) = S_t \phi(d_1) - k e^{-r(T-t)} \phi(d_2) \quad (21)$$

where

$$d_1 = \frac{\log\left(\frac{S_t}{k}\right) + \left(r + \frac{1}{2}\sigma^2\right)(T-t)}{\sigma\sqrt{T-t}}$$
$$d_2 = d_1 - \sigma\sqrt{T-t}$$

and $\phi(x) = \mathbb{P}(X \leq x)$ for $X \sim \mathcal{N}(0, 1)$

is the c.d.f of the normal law.

Black-Scholes Model assumptions

Black and Scholes derived a model to price European options, under several assumptions :

- ▶ The returns on the underlying asset are normally distributed.
- ▶ Stocks pay no dividend.
- ▶ There are no commissions and no transactions costs.
- ▶ The market is perfectly liquid : it is possible to buy or sell any amount of stock or options at any time, including fractional amount.

Solution to Black-Scholes PDE : put option

In the case of a call option $\Phi(S_T) = (S_T - k)^+$:

$$F(S_t, t) = -S_t \phi(-d_1) - k e^{-r(T-t)} \phi(-d_2) \quad (22)$$

where

$$d_1 = \frac{\log\left(\frac{S_t}{k}\right) + \left(r + \frac{1}{2}\sigma^2\right)(T-t)}{\sigma\sqrt{T-t}}$$
$$d_2 = d_1 - \sigma\sqrt{T-t}$$

and $\phi(x) = \mathbb{P}(X \leq x)$ for $X \sim \mathcal{N}(0, 1)$

is the c.d.f of the normal law.

- Fischer Black and Myron Scholes. “The Pricing of Options and Corporate Liabilities”. In: *Journal of Political Economy* 81.3 (1973), pp. 637–654.
- Jean-Philippe Bouchaud and Marc Potters. *Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management*. 2nd ed. Cambridge University Press, 2003.