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Gaussian White Noise Process

dx(t)

dt
= A(x(t), t)︸ ︷︷ ︸

Drift

+
√
D(x(t), t)︸ ︷︷ ︸
Diffusion

Γ(t)︸︷︷︸
White Noise Fct

(1)

With 〈Γ(t)〉 = 0 and 〈Γ(t)Γ(t′)〉 = δ(t− t′)
Rewrite:

dx(t) = A(x(t), t)dt+
√
D(x(t), t)dW (t) (2)

Where dW (t) ≡ Γ(t)dt is a Wiener increment
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Properties of a Wiener process W (t)

We write Wt ≡W (t)

1. W0 = 0

2. Independent increments: ∀t > s ≥ 0, Wt −Ws is
independent of {Wu}u≤s

3. Normally distributed increments: ∀t > s ≥ 0,
Wt −Ws ∼ N (0, t− s)

4. Wt is continuous in t
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Itô’s Integral

Definition: on blackboard!

Main Properties:
1. Existence whenever G(t) is continuous and non-anticipating

on [0, t]

2. General Differentiation Rule: for an arbitrary function
f(W (t), t):

df(W (t), t) =

(
∂f

∂t
+

1

2

∂2f

∂W 2

)
dt+

∂f

∂W
dW (3)

Why is dW 2 = dt ? And why is dWN+2 = 0 for N > 0 ?
⇒ Proof and example on blackboard!
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Itô’s Lemma
Let’s go back to the initial SDE:

dx(t) = A(x(t), t)dt+
√
D(x(t), t)dW (t) (4)

For an arbitrary function f(x(t)):

df(x(t)) = f(x(t) + dx(t))− f(x(t)) =

+∞∑
n=1

1

n!

∂nf(x(t))

∂xn
(dx(t))n

(5)
Intermediate steps on blackboard!

Itô’s Lemma:

df(x(t)) =

[
A(x(t), t)f ′(x(t)) +

1

2
D(x(t), t)f ′′(x(t))

]
dt+√

D(x(t), t)f ′(x(t))dW (t)
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Black-Scholes Model
I Black and Scholes (both economist and mathematician)

published in 1973 the article The Pricing of Options and
Corporate Liabilities1 to introduce their model.

I M. Scholes got the Nobel Prize in 1997 for this work, along
with Robert Merton (F. Black died in 1995).

Figure 1: Fischer Black and Myron Scholes

1Fischer Black and Myron Scholes. “The Pricing of Options and
Corporate Liabilities”. In: Journal of Political Economy 81.3 (1973),
pp. 637–654.
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European Option : definition

Definition A European Option is a contract that gives its
owner the right2 to buy or sell a certain asset at a
predetermined delivery price (the strike, k) in a future time (the
maturity date, T ).
The goal of Black and Scholes was to give a value for such
contract at time t < T .

2but not the obligation
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European Option : value at time T

Let’s consider a call option i.e. the option to buy the
underlying.
I At maturity time T , the underlying is worth ST on the

market and the owner has the opportunity to buy it at k
I If ST > k the owner should exercise the option, he will gain

ST − k if he sells directly the asset.
I On the contrary, if ST < k the owner has no interest to

exercise the option : his payoff is 0.
I The payoff (gains at time T ) is thus mathematically defined

as Φ(ST ) ≡ (ST − k)+ = max(ST − k, 0) :
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European Call Option : Payoff

Figure 2: Payoff of a Long Call EU Option with strike k = 50 at time
T .
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European Option : use in practice

European Options are widely used in finance, for mainly two
reasons reasons :
I Hedging : prevent big losses in a portfolio, secure the price

of a commodity3 in advance, lock-in a currency rate in
advance, ...

I Speculation

3E.g. Airline Companies use them to secure the price of oil
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Value of European options

What is the value of an option contract ? It is the price people
would agree to buy this contract at any time t < T .
I The price of an option at time t should reflect the expected

payoff obtained at the maturity Φ(S(T ))

Several model exists to predict the price of assets, Black and
Scholes used the Geometric Brownian Motion
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Black-Scholes Model : Return on the underlying asset

I One of the most important component in the model is the
prediction of the underlying price S(t).

I Black and Scholes assumed that the dynamics of a stock
follows a Geometric Brownian Motion :

dSt = Stµ(t)dt︸ ︷︷ ︸
drift, riskless part

+ Stσ(t)dWt︸ ︷︷ ︸
diffusion, risky part

(6)

Where Wt is a Wiener Process.
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Simulations of Geometric Brownian Motion
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Figure 3: Simulation of a Geometric Brownian Motion with
parameters estimaed from the S&P 500 over the last 200 days,
average over 5000 trajectories. 16 / 33



Black-Scholes Model : Return on the underlying asset

I Why Geometric Brownian Motion ? Because returns
(relative increments) on asset dSt

St
follow a drifted random

walk, not the price itself.
I Assuming µ and σ constants the solution of this SDE reads:

S(t) = S0e

(
µ−σ

2

2

)
t+σWt (7)

(Blackboard derivation with Itô’s Lemma.)
I Properties of this process :

I Trajectories are continuous (it is a continuous time model),
I The returns are independent,
I The returns are identically distributed.
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Value of an option

I The value of an option F can only depend on the current
price of the underlying (as it is memoryless) and the
current date : formally, we have F = F (St, t). St being a
stochastic process, one can apply Itô’s lemma : (derivation on
the blackboard)

dF (S(t), t) =(
∂F

∂t
+ µ(t)S(t)

∂F

∂S
+

1

2
σ(t)2S(t)2

∂2F

∂S2

)
dt+ σ(t)S(t)

∂F

∂S
dW (t)

I where the last term represent the stochastic (risky)
component of the option’s price.

I This is the dynamics of the option’s price, but we need
one more condition a ("reference point") to compute F : no
arbitrage principle
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Second equation : no arbitrage principle

I An arbitrage is a riskless strategy that has a positive payoff
with probability 1.

I Such arbitrage are not allowed in the financial theory : this
is the no arbitrage principle.

I It is an application of the Supply and Demand principle.
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No arbitrage principle : riskless assets

I The no arbitrage principle implies that a riskless strategy
should not pay more than lending money at the bank over
the same period otherwise, it is underpriced.

I Bank account dynamics :

dB(t) = rB(t)dt (8)

I Our goal is to construct a riskless portfolio which contains
the option, in order to compare it with (8).
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Construction of the portfolio

I It is possible to construct a riskless portfolio by buying one
option, and selling4 a certain amount ∆ of the underlying.

I At time t, the value of this portfolio is

V (St, t) = F (St, t)︸ ︷︷ ︸
Value of the option

− ∆ · St︸ ︷︷ ︸
Value of stock

(9)

I The question is how to choose ∆ to remove risk5 ?

4In finance it is possible to hold both positive and "negative" quantity of
asset. The first is said to be a long position and the second a short position.

5This way of defining the portfolio, called "Delta Hedging" is slightly
different from the original derivation of Black and Scholes :
Jean-Philippe Bouchaud and Marc Potters. Theory of Financial Risk and
Derivative Pricing: From Statistical Physics to Risk Management. 2nd ed.
Cambridge University Press, 2003
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Hedged (riskless) portfolio

I Reminding the value of the portfolio :

V (St, t) = F (St, t)−∆ · St (10)

I the goal is to protect the value of the portfolio6 from the
variation of St, hence we have to impose

0 =
∂V

∂S
=
∂F

∂S
−∆ =⇒ ∆ =

∂F

∂S
(11)

6We assume that the change in the portfolio value only comes from the
variation of the asset’s value and not from a change in portfolio’s
composition : it is said to be self financing.
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Hedged portfolio : Verification with Itô’s Lemma

I St being a stochastic process, one check that for ∆ = ∂F
∂S

the dynamics of the portfolio is indeed riskless by applying
Itô’s Lemma :

dV (s, t) = dF (s, t)−∆ · dSt (12)

=

(
∂F

∂t
+

1

2
σ2s2∂

2F

∂s2

)
dt (13)

(Blackboard derivation)
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Hedged portfolio

I The dynamics of the portfolio is purely deterministic : it is
indeed riskless for the choice ∆ = ∂F

∂S

I Given the no arbitrage principle, this portfolio must have
the same return than a bank account :

dV (S, t) = rV (S, t)dt (14)
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Summing up : our model

We now have the two components of our model :
1. The dynamics of the option’s price

dF (S, t) =(
∂F

∂t
+ µSt

∂F

∂S
+

1

2
σ2S2

t
∂2F

∂S2

)
dt+ σSt

∂F

∂S
dW (t) (15)

2. The value of a riskless portfolio combining an option and
the underlying :

dV (s, t) = dF (s, t)− ∂F

∂s︸︷︷︸
∆

dS(t) = rV (s, t)dt (16)
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Black-Scholes PDE

Combining the two previous equations gives the famous
Black-Scholes PDE :

∂F (s, t)

∂t
+ rs

∂F (s, t)

∂s
+

1

2
σ2s2∂

2F (s, t)

∂s2
− rF (s, t) = 0, (17)

F (ST , T ) = Φ(ST )
(18)
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Black-Scholes PDE : Remarks

I The drift coefficient µ does not appear in the PDE. In fact
the price F of the option is relative to the price of the
underlying, hence its deterministic evolution does not play
a big role. Only the volatility is important.

I If the interest rate of the bank is zero r = 0, the equation
becomes :

∂F

∂t
= −D

2

∂2F

∂s2
(19)

which is a diffusion equation in "backward" time given the
sign, with a terminal condition Φ(ST ) instead of initial
condition, as we often have in physics.
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Solving the equation

Remind the PDE :

∂F (s, t)

∂t
+ rs

∂F (s, t)

∂s
+

1

2
σ2s2∂

2F (s, t)

∂s2
− rF (s, t) = 0,

F (T, s) = Φ(s)

I There are many ways of solving this equation
I One is to cast it into a backward Fokker-Planck equation

for the transition probability P (x, T |s, t) :

∂P (x, T |s, t)
∂t

+ rs
∂P (x, T |s, t)

∂s
+

1

2
σ2s2∂

2P (x, T |s, t)
∂s2

= 0,

P (x, T |s, T ) = δ(x− s)
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Solving the equation

In this case the solution reads :

F (s, t) = e−r(T−t)
∫

dxP (x, T |s, t)F (x, T ) (20)

Where F (x, T ) ≡ Φ(x) is the terminal value. For a call option,
Φ(x) = (x− k)+ = (x− k) ·Θ(x− k)
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Solution to Black-Scholes PDE : call option

In the case of a call option Φ(ST ) = (ST − k)+ :

F (St, t) = St φ(d1)− ke−r(T−t) φ(d2) (21)

where

d1 =
log
(
St
k

)
+
(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

and φ(x) = P(X ≤ x) for X ∼ N (0, 1)

is the c.d.f of the normal law.

30 / 33



Black-Scholes Model assumptions

Black and Scholes derived a model to price European options,
under several assumptions :
I The returns on the underlying asset are normally

distributed.
I Stocks pay no dividend.
I There are no commissions and no transactions costs.
I The market is perfectly liquid : it is possible to buy or sell

any amount of stock or options at any time, including
fractional amount.
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Solution to Black-Scholes PDE : put option

In the case of a call option Φ(ST ) = (ST − k)+ :

F (St, t) = −St φ(−d1)− ke−r(T−t) φ(−d2) (22)

where

d1 =
log
(
St
k

)
+
(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

and φ(x) = P(X ≤ x) for X ∼ N (0, 1)

is the c.d.f of the normal law.
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